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FOREWORD 

This report  presents  the resul ts  of work performed by 

personnel of the The rma l  Environment Section of the Lockheed 

Missiles & Space Company, Huntsville Research & Engineering 

CenLer for the Aero-Astrodynamics Laboratory of Marshall  

Space Flight Center  under Contract NAS8-20082 (subcontract to 

NSL P O  5-09287). 

requirements of Appendix B- 1 ,  Schedule Order  No. 104-B. 

This task was conducted in  res-onse to the 

The NASA technical coordinators for  this study were  Mr .  
W i l l i a m  C .  Rochelle and Mr .  T e r r y  F.  Greenwood, R-AERO-AT, 

of the The rma l  Environment Branch of the Aero-Astrodynamics 

Laboratory.  
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,SUMMARY 

B 
Experimental  and theoretical  correlat ions of p r e s s u r e  and heat t ransfer  

rate were  obtained under a wide var ie ty  of t es t  conditions for rocket exhausts 

impinging on flat plates and curved panels.  
* * 

Axisymmetric r ea l  gas exhaust 

plumes were  generated using the method of charac te r i s t ics  and equilibrium 

chemistry to pr0vid.e input to the heating and p res su re  analysis.  

ment p re s su res  were  calculated using both a relieved boundary approach and 

the Newtonian impact theory for strong and weak shock interaction regions. 

Heat t ransfer  ra tes  in  the weak shock region were  obtained using var ious 

methods, including a turbulent i terat ion method and the Spalding and Chi 

turbulent skin friction method. A modified Fay  and Riddell equation was 

used in  the strong shock region. 

p re s su res  and heating r a t e s  can be predicted quite accurately with the 

analyses developed. 

Impinge- 

The resul ts  showed that the experimental  

iii 



LMSC/HREC A791354 

CONTENTS 

Section 

FOREWORD 

SUMMARY 

LIST OF FIGURES 

NOMENCLATURE 

INTRODUCTION 

EXPERIMENTAL ANALYSIS 

FLAT PLATE IMPINGEMENT FLOW FIELD AND 
PRESSURE ANALYSIS 

3.1 Weak Shock Region 

3.2 Strong Shock Region 

HEA7' TRANSFER ANALYSIS 

4.1 Weak Shock Region 

4.2 Strong Shock Region 

DISCUSSION OF RESULTS 

5.1 Pressure Distribution 

5.2 Heat Transfer  R a t e  

CONCL US IONS 

REFERENCES 

Appendix 

A THE CONCEPT OF FAR DOWNSTREAM 

iv 

iii 

V 

vii 

1 

3 

7 

8 
11 

14 

14 

22 

24 

24 

26 

2 9  

30 

A- 1 



LMSC/HREC A791354 

LIST OF FIGURES 

1 

x 2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Page 

Location of Instrumentation on Flat Plate  for  Centaur Retro Tes t s  

Centaur Panel  used in S-IVB Ret ro  Motor Tes t s  
35 

36 

37 

38 

39 

S-IB/S-IVB Interstage used in S-IB Retro Tes ts  at CAL 

Description of F l a t  Plate Impingement P rob lem (Not to  Scale) 

F la t  Plate used in RDS-507 Propellant Tes ts  a t  CAL 

Relationship Between Plume Volume Ratio, V l/Vz, and 
P a r a m e t e r ,  Tan6 40 
Relationship Between P a r a m e t e r  a and P a r a m e t e r  Tan6 

Mach Number Contours fo r  UTC Centaur Ret ro  Motor a t  109,000 F t  

Comparison of P r e s s u r e s  on F la t  Plate Due to  Exhaust of UTC 
Centaur Retro Motor at 109,000 Fee t  

Comparison of P r e s s u r e s  on F la t  Plate  Due to Exhaust of Thiokol 
Centaur Retro Motor at 120,000 Fee t  

Comparison of Pressures on Flat P la te  Due to Exhaust of RDS-507 
Motor a t  200,000 Fee t  45 

Comparison of P r e s s u r e s  on F la t  Plate Due to  Exhaust of A i r  
( F r o m  Reference 2) at 166,000 Fee t  46 

Comparison of P r e s s u r e s  on F la t  Plate  Due to Exhaust of Nitrogen 
( F r o m  Reference 3) a t  87,000 Fee t  47 
Comparison of P r e s s u r e s  on Centaur Panel  Due to Exhaust of S - I V R  
Retro Motor at 115,000 Feet 

Comparison of Pressures on S-IB/S-IVB Interstage Due to  Exhaust 
of S-IB Retro Motor at 200,000 Fee t  

Mach Number Contours fo r  S-IB Retro Motor a t  200,000 Fee t  

Comparison of Total  P r e s s u r e  Behind Shock (Pitot  P r e s s u r e )  i n  
S-IB Retro Motor Plume at 200,000 Fee t  

Comparison of P r e s s u r e s  on S-I1 Interstage Due to Exhaust of S-I1 
Retro Motor a t  391,000 Fee t  

Comparison of Heat Transfer  Rates on F la t  Plate  Due to Exhaust 
of UTC Centaur Retro Motor a t  109,000 Fee t  

41 

42 

43 

44 

48 

49 
50 

51 

52 

53 

V 



LMSC/HREC A791354 

LIST OF FIGURES (continued) 

F igure  Page 

20 

21 

22 

23 

Comparison of Heat T rans fe r  Rates on Flat Plate Due to Exhaust 
of Thiokol Centaur Ret ro  Motor a t  120,000 F e e t  54 
Comparison of Heat  Transfer  Rates on Fla t  Plate  Due to Exhaust 
of RPI  Centaur Retro Motor at 117,000 Feet 5 
Comparison of Heat T rans fe r  Rates on S-IB Interstage Due to  
Exhaust of S-IB Retro Motor at 200,000 F e e t  96 
Comparison of Heat T rans fe r  Rates on Centaur  Panel Due to 
Exhaust of S-IVB Ret ro  Motor at 115,000 F e e t  57 

vi 



NOMENCLATURE 

a 
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C 

C 
P 

cf  

'h 
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F 
C 

Rx 

G1 

h 

E 

ho 

H 

J 

Le 

I 

M 
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e 

s ta t ic  p re s su re  

vii 



LMSC/HREC A79 1354 

NOMENCLATURE (continued) 

Pr 

r 

r 

R 

C 

- 
R 

Re 

Re 

T 

U 

UG 

v1 

v2  

X 

- 
X 

- 
T X 

Y 

Prandt l  number 

heat t ransfer  ra te  

recovery factor 

chemical recovery factor  

gas constant; a l so  distance perpendicular to  
nozzle axis  of symmetry 

nondim,ens ional distance equal to R/Re 

radius of nozzle exit 

Reynolds number 

Reynolds number based on 6 

temperature  

velocity 

friction velocity equal to (7 / p  
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volume segment of plume 
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) w w  
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) 

fi 
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flow field 

distance along plate centerline 

nondimensional distance equal to x/Re 
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NOMENCLATURE (continued) 

A 

6 

cc 
x 

P 

Subscripts 

AMB 

aw 

CH 

e 

FS 

i 

KIN 

M 

mws 

n 

SL 

S 8  

t 

T 

t ransformed bounda r y la ye r thickne s s 

nozzle expansion rat io;  a l so  shock angle 

pa ramete r in  Eo r odnitzen t rans  fo rmation 

momentum thickne s s ; a lso  flow angle 

viscosity 

density 

shear  s t r e s s  

correct ion factor equal to (c - c )/ci i 1 w 1  i 

ambient conditions outside plume 

adiabatic wall 

c he mica1 

exit  

full- scale  

species i ;  aLso  ,xompress ib l e  

kine tic 

model 

maximum strength weak shock 

l a s t  t e r m  in  i teration process  

sea  level 

strong shock 

total  

supersonic turning point 

ix 



LMSC/HREC A79 1354 

Subscripts 

TH 

W 

1 

00 

Superscr ipt  

.b -8- 

NOME NC LATURE (continued) 

thermal  

wall  

propert ies  behind shock a t  edge of boundary layer  

propert ies  i n  f r e e s t r e a m  in  front of shock 

propert ies  evaluated a t  Ecker t  reference enthalpy 

X 



LMSC/HREC A791354 

Section 1 

INTRODUCTION 

r?l 

During separat ion of stages of large rocket vehicles,  such as the 

Saturn,  solid propellant r e t ro  and ullage motors  fire in o rde r  to facilitate 

removal of lower s tages  f r o m  upper s tages .  Because of the high altitudes 

involved, the highly expanded plumes of these motors  impinge upon and 

consequently may damage nearby components and s t ruc tures  on both upper 

and lower s tages .  Because of this possibility of damage, it is  necessary  to 

have suitable methods of predicting impingement heating and p res su res  which 
will compare favorably with both ground t e s t  and in-flight experimental  data. 

d 

The analysis  (experimental  and theoretical)  of plume impingement on 

flat plates o r  curved panels mounted paral le l  o r  at a small angle to the 

nozzle axis has  received considerable attention in recent years .  Bauer and 

Schlumpf (Reference 1 )  and Vick and Andrews (Reference 2)  measured  p res -  

s u r e s  on flat plates i n  which cold air was used as  the working fluid. Margolin 

and Welch (Reference 3) and Gopin and Margolin (Reference 4) ,  using cold 

nitrogen and helium and cold a rgon  and sulfur hexafluoride, respectively,  as  

the working fluids, a l so  measured  p r e s s u r e s  on flat plates.  Heat t ransfer  

a s  well as p res su res  were  measured  on a spli t ter  plate placed between two 

engines of a n  S-IV four-engine model a t  Cornel1 Aeronautical Laboratory 

(CAL) (Reference 5 ) ,  using gaseous H and O2 a s  the propellants.  

mental measurements  of heating and p res su re  on a flat  plate due to the 

exhaust of a n  Aerozine 50/N 0 Apollo RCS engine were  reported by Runyan 2 4  
(Reference O ) ,  Barebo and Ansley (Reference 7) ,  Piesik and Lofland (Refer- 

ence 8),  and Eoudreaux and Etheridge (Reference 9) .  Lehre r  (Reference 10) 

obtained temperature  measurements  on a curved panel impinged upon by 

exhausts of a scale  model of the RCS engine. 

heating and p res su re  f o r  the full-scale RCS engine tes t s  were  discussed by 

Pies ik  (Reference 11) and Piesik,  Koppang, and Simkin (Reference 12), as 

Experi-  2 

t 

Theoret ical  correlat ions of 

'Reaction Control Sys tem 
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well as by Boudreaux and Etheridge (Reference 9) .  
analyses  of rocket exhaust impingements effects on a flat plate have been 

reported by African0 (Reference 13) and Lewis, Hackett, and Kuby (Refer- 

ence 14). 

Other recent theoretical  

In recent yea r s  NASA/Marshall Space Flight Center and Lockheed/ 

Huntsville have been investigating the effects of rocket exhaust impingement 

on various par ts  of the Saturn vehicles.  

a summary  of heating and p res su re  instrumentation used in  exhausts of both 

solid and liquid propellant Saturn rockets.  

various types of heating, including stagnation and flat plate convection, 
par t ic le  impingement and particle radiation f r o m  Saturn ullage and r e t ro  

motor exhausts.  

an analysis of heating caused by the S-IB r e t r o  motor  exhaust impinging on 

the S-IR/S-IVB inters tage,  and Rochelle (Reference 19) presented calculations 

of impingement p re s su re  on the S-IC forward inters tage caused by the S-I1 

ullage motor exhaust. 

Rochelle (Reference 15) presented 

Rochelle (Reference 16) discussed 

Rochelle (Reference 17) and Gibson (Reference 18) discussed 

In this repor t ,  analytical techniques for  predicting impingement p re s  - 
su res  and convective heating on flat  plates and curved panels (o r  sections of 

the actual  rocket vehicle) a r e  discussed along with t e s t  data for a wide var ie ty  

of alt i tudes,  chamber  p re s su res ,  a r e a  ra t ios ,  and distances of plate to nozzle 

axis  as shown in Table 1 (see page 6) .  
analyzed pertains to solid propellant plumes; however, because of the small 

particle loadings (particle m a s s  flow less than 5710 of the total  mass flow) and 

relative positions of plume axis  and flat plate (or  vehicle surface) ,  the particle 

impingement heating ra tes  we re practically negligible. 

The majori ty  of the experimental  data 

2 

P 
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Section 2 

E X  PE  RIMEN TA L ANALYSIS 

Experimental  values of p re s su re  and heat t ransfer  ra te  on flat 
J plates and curved panels immersed  in  a rocket exhaust plume were  

obtained f r o m  seve ra l  tes t  p rograms.  

of the tes t  p rograms which provided data for comparison with theoretical  

prediction methods.  

This section gives a summary  

Centaur Retro Tes t  a t  NASA/Marshall Space Flight Center (MSFC) 

This tes t  p rogram involved the determination of impingement p re s su res  

and heating ra tes  f rom the plumes of ten motors  of five types of solid propel- 

lant (two of each type) which were  possible candidates for  the Centaur r e t r o  

motor  used for  separating the Centaur stage f r o m  i ts  payload. The motors ,  

which were  of the general  thrust  level of 500-1000 pounds, were  f i red  in  

Altitude Cel l  112 (which was capable of altitude simulation of 100- 120,000 

feet)  a t  MSFC's Tes t  Laboratory.  

description of the instrumentation involved and a discussion of heating (radi-  
ative as well  as total) and p r e s s u r e s  obtained during the program. Figure 1 

shows the location of the heat t ransfer  and p r e s s u r e  instrumentation on the 

aluminum flat plate which was mounted ver t ical ly  in the cel l ,  12 inches f r o m  

the axis of each motor.  The heat t r ans fe r  ca lor imeters  were  of the Gardon- 

gage (Reference 21) type, and the p re s su re  t ransducers  were  of the absolute- 

unbonded strain-gage type. 

Rochelle (Reference 20) gave the overal l  

S - IVB Retro Tes t  Arnold Engineering Development Center  (AEDC) 

These tes ts  involved the measurement  of p re s su re  and heat t ransfer  on a 

model of the centaur stage as a resul t  of S- IVB r e t r o  motor exhaust impinge- 

ment. The tes t  configuration ( Figure 2 )  was mounted in  the spray  chamber 

of the 300-fOOt deep 5-4 ce l l  (capable of altitude simulation of 90- 130,000 feet)  

3 
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a t  AEDC. 

at 0 

two a t  11.5O cant angle. 

including var ious l a s e r  beam attenuation, solar  cel l ,  and paint sample degra-  

dation experiments ,  was given by Muse (Reference 22). 

were  measured  along the panel a t  five positions (55-125 inches f r o m  the 

nozzle exit)  and p r e s s u r e s  a t  seven positions (55-148 inches f r o m  the nozzle 

Five 6 100-pound thrust  motors  were  f i red in  the p rogram - three 
0 cant angle with the motor  axis 37 inches f rom the Centaur surface,  and 

The complete description of this tes t  p rogram,  

Total heating rates 

exi t ) .  L 

S-IB and S-I1 Retro Tes ts  a t  Cornel1 Aeronautical Laboratory (CAL) 

This tes t  p rogram involved the simulation of S-IB and S-I1 r e t ro  motors 

by means of a solid propellant combustor whose exhaust impinged on 1/10- 

scale models of the S-IB/S-IVB and S-II/S-IVB inters tages ,  the S - IVB thrust  

s t ruc ture ,  and the J-2 engine. 

stage,  shown in Figure 3 with some of the heating and p r e s s u r e  gages in position, 

was mounted inside the CAL 10x28-foot altitude chamber. F o r  the S-IB r e t r o  

fir ings this cel l  was pumped down to a p res su re  simulating 200,000 feet ,  the 

approximate S-IB/S-IVB separat ion alt i tude,  and fo r  the S-I1 r e t r o  fir ings to 

a p r e s s u r e  simulating 391,000 feet  (the highest simulated altitude obtainable 

in the cel l ) .  

in te rs tages ,  S-IVB thrus t  s t ruc ture ,  and 5 - 2  engines; and total p re s su res  

were  measured  on the inters tage by means of a five-pronged p res su re  rake.  

A description of the prel iminary t e s t  plan for this p rogram was given by 

Rochelle (Reference 2 3 ) ;  Dennis and Hendershot (Reference 24) have 

descr ibed all of the S-IB and S-I1 r e t r o  p re s su re  and heating data.  

The t e s t  configuration for the S-IB/S-IVR in te r -  

Heating and s ta t ic  p re s su re  measurements  were  obtained on the 

The solid propellant combustor,  discussed by Hendershot (Reference 

2 5 ) ,  consis ts  basically of a combustion chamber ,  exhaust nozzle, and nozzle 

and venting diaphragms. 

pellant were  glued to a 10-point s t a r  propellant holder.  

burning in  the chamber  was accomplished within 2-3 milliseconds by a spark-  

ignited oxygen-rich (O/F = 20) HZ-02  mixture.  

In the combustion chamber  thin sheets  of solid pro-  

Uniform propellant 

After the nozzle diaphragm 

4 



LMSC/HREC A79 1354 

ruptured a t  the design p r e s s u r e  of about 1'700 psia,  approximately 10-15 

milliseconds of steady state testing t ime existed fo r  each run. 

fas t -  response p re s su re  (Reference 26) and platinum thin-film heat t ransfer  

(Reference 27) instrumentation were  used to make all measurements .  

Extremely 

Rocketdyne RDS-507 Propellant Tes t  a t  Cornel1 Aeronautical  Laboratory (CAL) B 

rg 

The short-duration combustor described above, and discussed by 

Hendershot i n  Reference 28, was used in  this tes t .  

plate, shown in Figure 4 ,  was mounted 4.5 inches f r o m  the axis of a motor  

which used Rocketdyne RDS - 507 propellant and which had about 10% A1 203 

part ic les  in  the exhaust. 

measurements  a t  ten locations off the centerline.  

thin-film gages were  used a t  eight positions on the plate centerline and a t  s ix  

locations off the plate centerline.  

A 28-inch x 28-inch flat 

Fas t - response  p re s su re  gages were  used to obtain 

Fas t - response  platinum 

Other Sources of Data 

Heating ra te  correlat ions were  made for  the S-I inters tage and S-IV 

stage thermocouple data discussed by Usher (Reference 29) .  These data 

were  obtained while the S-I r e t r o  motor  exhaust impinged on these a r e a s  

during the flight of the Saturn SA-3 vehicle. 

on the S-IE3 inters tage caused by impingement of the S-IE r e t ro  exhaust 

during flights of the Saturn AS-201 and 202 vehicles was used to cor re la te  

with CAL tes t s  and theoretical  calculations. P r e s s u r e  correlat ions were  

made for  some of the cold gas data of References 1,  2 and 3, and both heating 
and p res su re  correlat ions were  determined for some of the data discussed in 

References 11 and 12. 

Total heating calor imeter  data 

A summary  of the important pa rame te r s  associated with each experi-  

mental  t e s t  program considered i n  the present  repor t  is shown in Table 1 

fo r  reference purposes,  

5 
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Section 3 

FLAT PLATE IMPINGEMENT FLOW FIELD 
AND PRESSURE ANALYSIS 

'4 

T--e flow field c rea ted  by a rocket nozzle exhaust plume impziging upon 

a flat  plate boundary para l le l  to the nozzle axis of symmet ry  (hereaf ter  called 

the impingement flow field) can be solved exactly by a three-dimensional 

method. However, the absence of a good three-dimensional method which 

adequately descr ibes  all the aspec ts  of this complex problem has prompted 

a sea rch  for a simple but reliable method based on existing capabilities. 

The init ial  problem of describing a real gas  nozzle exhaust plume flow field 

can be solved accurately by the Lockheed/Huntsville method-of-characterist ics 

solution (Reference 30) as demonstrated in  Reference 31. 
thermochemistry program which can handle e i ther  f rozen or  equilibrium chemistry 

has been incorporated as par t  of Reference 30. 

u se  of this method and the equilibrium assumption to generate a n  axisymmetr ic  

exhaust plume flow field at  the prescr ibed altitude f o r  each rocket motor ,  based 

on the given propellant composition and chamber p re s su re .  

n 

The NASA/Lewis 

The present  analysis makes 

Looking a t  the impingement flow field f r o m  a simplified point of view, 

the flow along the centerline of the flat plate boundary might be envisioned 

as essent ia l ly  two-dimensional. However, i f  the undisturbed plume flow field 

is to be described by a n  axisymmetr ic  method of charac te r i s t ics  solution, a 

s t a r t  line f rom a n  axisymmetr ic  method-of-characterist ics flow field cannot be 
used to generate a two-dimensional impingement flow field. Thus, a n  impinge- 

ment flow field based on the axisymmetr ic  plume must  itself be axisymrnetric.  

Of course,  i n  the physical problem, the impingement flow field along the center -  

line is neither two-dimensional nor  ax isymmetr ic  due to the three-dimensional 

"relief" which occurs  as the flow spreads  over the flat plate. However, by 

, u- aal gement flow field, this relief may be simulated 

boundary on which the method- of - charac te r i s t ics  

solution converges. The exact f o r m  of this relieved boundary is discussed 

7 
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below. It should be mentioned that a three-dimensional method for  predicting a 

p res su re  distribution over the plane of symmetry  between axially paral le l  rocket 

nozzle exhaust plumes has been developed by D'Attore, etal.(Reference 32).  The f i -  
nite difference technique used to calculate the inviscid three-dimensional inter-  

action region i s  based on the original method of Lax and Wendroff (Reference 

33) and modified by a f a s t e r ,  two-step method discussed by Richtmeyer 

(Reference 34). 

ideal gas, however, the method will handle only weak interactions between 

the adjacent plumes; i .e. ,  no subsonic regions a r e  allowed. These restr ic t ions,  

along with the need f o r  init ial  information f rom a charac te r i s t ics  program, 

l imit  the usefulness of the method. 

In addition to the fact  that the flow medium is t reated as a n  

3.1 WEAK SHOCK REGION 

An important factor in  determining the impingement flow field is 

separating the supersonic and subsonic flow regions.  The shock wave 

generated by the plume flow field impinging on the flat  plate boundary will  

lie approximately paral le l  to the boundary fo r  a shor t  distance down the 

plate. 

normal  shock, s imi l a r  to that found in  the stagnation region of a blunt body, 

is subsonic and cannot be predicted by the method of charac,teristics. 

some point downstream, Lowever, the Mach number becomes grea te r  than 

unity and the impingement shock wave curves away f rom the boundary in 

accordance with weak shock wave theory. A s t a r t  line for  the method of 

charac te r i s t ics  may be determined by superposing the flat plate boundary 

upon the exhaust plume flow field and tracing each left running charac te r -  

ist ic line as i t  c r o s s e s  the boundary. Beginning with the point a t  which the 

envelope shock c r o s s e s  the boundary, a decision can  be made for  each 

character is t ic  line whether or not the maximum strength weak shock could 

be attached artif icially a t  the crossing point. 

c losest  to the nozzle exit plane at which the maximum strength weak shoGk 

can be attached and sustain supersonic flow downstream is designated the 

(See F igure  5.) The portion o'f the impingement flow field behind this 

At 

The point on the boundary 

"turning point, 'I and the charac te r i s t ic  line passing through this point 

becomes the "s ta r t "  line fo r  the method-of -characte  r is t ics  impingement 

flow field. 
8 
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It is fully realized that in the physical flow field, the weak portion of the 

Observation of experimental  flow shock wave is not attached to the boundary. 

fields indicates, however, that the actual  shock wave becomes tangent to the 

art if icially attached shock wave af te r  a very short  distance.  Thus,  use of a n  
ar t i f ic ia l  attachment point simplifies the s t a r t  of the supersonic portion of the 

flow field (weak shock region) while introducing e r r o r s  of only negligible 

importance.  

boundary and experimental  data in  this region. 

3 

This will  be ver i f ied by comparing predicted p res su re  on the 
u 

With the s t a r t  line now defined, and the flat plate boundary assumed to 

be unaltered, the axisymmetr ic  impingement flow field becomes the flow 

inside a cylinder of radius equal to the distance between the plate and the 

nozzle axis of symmetry.  

of the three-dimensional relief effects which a r e  present  i n  the physical 

problem. By examining the comparison between seve ra l  method-of 
charac te r i s t ics  impingement flow fields and the corresponding tes t  data for  

p re s su re  distribution on the flat  plate centerline,  it  was determined that a n  

a l te red  o r  fictitious upper boundary represented by a cubic equation would 

predict  the data. In t e r m s  of nondimensional coordinates,  this equation is 

However, this flow field would account for  none 

given by 
3 (E-E) + a  ( 3 - E )  (x-zo) - b (z-3; 0 ) 3  = 0 

where x is the axial location where Newtonian impact theory predicts a 

maximum value of p re s su re  on the flat plate boundary. 

impact theory, 

0 

Although Newtonian 

- P, + P, urn sinZ[8flow - 'body 1 - 
Pbody 

predicts the co r rec t  location of the maximum pres su re  in  the weak shock region, 

i t  fails to give the co r rec t  magnitude of the maximum and the shape of the 

distribution curve.  

The parameters  a and b a r e  unique for  each problem and can  be 

determined in  the following manner .  The quantity, 

tan0 = b1/3 (b > 0) 

9 

(3) 

* 
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defines the slope of a line to which Equation (1)  asymptotically becomes 

tangent for  values of x beyond a cer ta in  point. 

represents  the maximum amount of relief needed to simulate the physical 

flow problem far downstream. 
present  repor t ,  the axial  location (FT 4- 3 0 )  can  be t reated a s  far downstream 

i .e . ,  a point beyond which the derivative of Equation (1) is asymptotically close .c 

to Equation (3).  

examples shown in  Appendix A. 

defined i n  t e r m s  of a volume ratio.  

calculated f r o m  zr to x 
plate boundary, where the flat plate is a plane defined by = h. If this 

volume segment is V 

field is defined as 

In a sense ,  this angle 8 

F o r  the range of parameters  considered in  the 

This idea is fur ther  i l lustrated by seve ra l  representative 

Another measure  of this flow relief can be 

A volume segment of the plume may be 

4- 30 between the plume f r ee  boundary and the flat  

.. 

- r T 

and the volume of the axisymmetr ic  unrelieved flow 1 

the volume rat io  V /V then represents  the need for  relief based on the 1 2  
volume of the exhaust plume which is intercepted by the flat plate boundary. 

An empir ical ly  derived relationship between these two measu res  of relief,  

V /V and tane, is given by Figure 6.  
e t e r  a and t a d ,  is given by Figure 7. 

The relationship between the param-  1 2  

Thus, a given rocket motor ,  propellant composition, chamber  p re s su re ,  

altitude (PAMB), and the flat plate location specify a supersonic turning point 

and volume rat io  V1/V2. 

parameter  tan6 by Figure 6,  and Figure 7 specifies. the unique value of the 

parameter  a associated with the value of tane. A calculation of Newtonian 

impact p r e s s u r e  [Equation ( 2 ) ]  along the flat plate boundary based on the flow 

field propert ies  in the method of character is t ics  undisturbed plume flow field 

will  yield x 
value of these parameters  i n  Equation (1) determined the relieved boundary 

f o r  the axisymmetr ic  method of charac te r i s t ics  impingement flow field. Then 

the p re s su re  predicted on the relieved boundary of the impingement flow field 

becomes the p re s su re  on the actual flat plate centerline a t  the same axial 

loc a t  ion. 

The value of V1/V2 determines a unique value of the 

the axial location of the maximum Newtonian pressure .  The 
0’ 

10 
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3 .2  STRONG SHOCK REGION 

The region of the impingement flow field ups t ream of the turning point 

Depending on  the strength of the plume and the re la -  is difficult to analyze. 

tive location of the plate with respect  to  the axis of symmetry,  a cer ta in  

amount of flow reve r sa l  can be present .  

the p re s su re  distribution and heat t ransfer  ra tes  on the flat plate boundary 

in  this region can be determined without a detailed knowledge of the actual  

flow field. 

5. 
However, a good approximation of 

‘‘ 

The method used in  this analysis to determine the p re s su re  on the flat 

plate in  the region where the impingement shock wave is roughly paral le l  to 

the boundary (hereaf ter  called the strong shock region) is based on ideal gas  

shock relations.  

shock wave such that it becomes paral le l  to the boundary, 

superposed on the exhaust plume flow field, flow field properties can be 

determined a t  each point where a character is t ic  line c ros ses  the flat plate, 

beginning with the intersection of the undisturbed plume f ree  boundary. 

values of Mach number and y a t  each intersection point a r e  used as ups t ream 

conditions to define the turning angle and shock angle associated with the 

maximum strength weak shock wave a t  that point. 

wave which is hypothesized to exist  a t  this point is assumed to have a shock 

angle and turning angle l e s s  than or  equal to those for a normal  shock wave 

but grea te r  than those f o r  the maximum strength weak shock wave. 

turning angle for  the strong shock wave has been defined as the difference 

between the flow angle and the boundary angle, only the shock angle must  be 

determined. 

It is  postulated that the flow must tu rn  through a strong 

With the flat plate 

The 

Then, the strong shock 

Since the 

This is done with a l inear  interpolation formula 

- -  - 6,s - 6mws ‘ss - ‘mws - 
‘normal - ‘mws *normal - 6mws 

o r  

11 
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With the shock angle now specified, ideal gas shock relations,  based on the 

intersect ion point values of Mach number,  Y and s ta t ic  p re s su re  as ups t ream 

propert ies ,  can be used to predict  the s ta t ic  p re s su re  behind the strong shock 

wave. 

the flat plate boundary. 

intersect ion point along the flat plate between the undisturbed plume f r ee  

boundary and the previously determined supersonic turning point. 

It is assumed that this downstream value of static p re s su re  is felt  by 

This procedure is used fo r  each charac te r i s t ic  line 

72. 
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4 

Section 4 

HEAT TRANSFER ANALYSIS 

The analysis of heat t ransfer  along a flat plate caused by rocket ' exhaust impingement is complex since the boundary layer  is composed of 

a n  a r b i t r a r y  gas mixture  which may be dissociating and ionizing a t  finite 

chemical reaction ra tes  (nonequlibrium flow). Also,  the atoms and ions 

may diffuse through the boundary layer ,  releasing a high exothermic energy 

upon recombination a t  the wall. 

catalytic, in  which case  the atoms and ions would not be instantaneously 

recombined upon reaching the wall ,  and a finite number would exis t  there .  

Fu r the rmore ,  the wall  may not be completely 

Because of the complexities associated with analyzing nonequilibrium 

boundary layers ,  the following equation f w  heat t ransfer  through a n  equilib- 

r i u m  chemically reacting boundary layer  to a flat plate, a s  discussed by 

Dorrance (Reference 35) and Rosner (Reference 36), was  used i n  this analysis 

The quantity 4, descr ibed by Rosner (Reference 36) and Goulard (Reference 

3 7 ) ,  is defined as 
c - c  i 1 W 
i 

r#) = -- 
c: ( 7 )  

"1 

and represents  a correct ion factor specifying the degree of catalycity at the 

wall ,  

no recombined atoms a t  the wall  and the heat t ransfer red  to the wall  is a 

maximum (catalytic wall) .  

of a toms exis t  a t  the wall  as at the edge of the boundary layer ,  i n  which case  

As applied to a binary dissociating gas ,  9 = 1 implies that there  are  

Conversely, 46 = 0 implies that the same number 

13 
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the heat t ransfer red  to the wal l  is a minimum (non-catalytic wall) ,  

assumption of q =  1 was  used in this analysis.  

driving potential (h 

The 

The enthalpy difference o r  

- hw) may  then be wri t ten as aw 

- h  - h  
CH WTH wCH i- h l  KIN hl  h - h  = aw w 

2 

c d T t r -  u1 cc hy 2 g J  “c i il  

- c c i  JTw cpi dT - r C c i hp i W 
298OK i w  

14 

The chemical recovery fac tor ,  r discussed by Bartz (Reference 38) 

may be expressed  as L e o a 6 ,  where the Lewis number,  L e ,  re la tes  the a tom 

diffusion through the boundary layer  to the thermal  diffusion of heat by con- 

duction. The thermal  recovery factor ,  r ,  was taken to be (Pr ) for  

laminar  flow and (Pr ) 

section a discussion will  be given of both laminar  and turbulent flow heat 

t ransfer  prediction methods used in the weak shock region and laminar 

methods for  the strong shock region. 

C’  

::: 0.5 

::: 0.333 
fo r  turbulent flow. In the remainder  of this 

4.1 WEAK SHOCK REGION 

Laminar  Flow. One of the laminar  flow methods used in the analysis  

(designated the i terat ion method) was based upon the von Karman-Pohlhausen 

equation, modified for compressible  flow by the Dorodnitzen transformation 

and programmed originally by Hoenig (Reference 39). With this method the 

following velocity profile was used a c r o s s  the laminar  boundary layer  

U 3 4 A  2 3 4  

u1 
- = 2 7 7 - 2 r l  +’I t g ( 7 p 3 V  t 3 t 7  - r 7 )  (9 )  

B c 
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where the parameter  X is defined as 
3 

A' p1 d u l  
2 dx 

= - - -  
pw Pw 

r; The quantity 17 is obtained f rom the 

1 .. 'I = -  A 

Dorodnitzen transformation a s  

The transformed boundary layer  thickness,  A ,  is obtained f rom the r a t io .  

1' where Equation (9)  i s  used for u/u 

The momentum thickness,  8, together with the skin friction coefficient, 

C , is found by a n  i terat ion of the von Karman integral  equation f 

de  - - cf - 9  
2 

- -  
dx 

the skin friction relation 

and the t ransformed displacement thickness ra t io  

6"/A = /' [(h/h l )  - u/ul dq 
TH I 

0 

15 
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The enthalpy distribution through the boundary layer  is found as 

2 3 
h = h W 4- ( h t l -  hw) (277- 271' 4-77  4, - $3- 

The shape factor ,  H, in  Equation (13) is 

The Reynolds analogy factor 

.,. 0 .6 '7 
Ch = 0.5 C f / ( P r i )  

(17) E 

was then used together with Equations (6)  and (8) to predict the heating ra te  

to the wall. 

The i terative value of Prandt l  number,  Pr:, was evaluated at the Eckert  

(Reference 40)  reference enthalpy 

.I, .L 0 .5 
h n = 0.5 (h l  4- hw) t 0.22 ( P r )  n (u;/Zg J) 

.l, 

An i terat ion technique was used to find Pr'" which involved the use of n 
the NASA/Lewis t ranspor t  property program, descr ibed by Svehla (Reference 

41) fo r  a n  H2 - 0 In this manner the Lockheed/Huntsville method- 

of-character is t ics  program was used to obtain the f r e e s t r e a m  p res su re ,  p l ,  

and temperature ,  T1 ,  a t  the edge of the boundary layer  (behind the weak 

shock), and the Prandt l  number was obtained for  these two independent 

var iables .  The NASA/Lewis thermochemical p rog ram was then used to 

obtain the enthalpy corresponding to this temperature  and p res su re .  These 

values of Prandt l  number and enthalpy, h,  were  inser ted  in  Equation (19) to 

obtain a new value of h .  The temperature  corresponding to  this value of h 

was then used with the same p res su re  to obtain a new value of Pr"' f rom the 

t ransport  property program and, hence, with Equation (19) a new value of 

re ference  enthalpy. The i terat ion process  was continued until PT M Prn- 

and therefore h NN h 

sys tem.  2 

.l. 4. 

rlr 

.b ,I. .l. 

J, n .L 

n n-1'  
16 

s 
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Laminar  flow theory a l s o  considered the skin friction coefficient equation 
rlr 

due to  Blasius. 

and p". 

Using the Ecker t  reference enthalpy to  evaluate values of P''. 
.b 

this relation is given by 

0.5 
cf  = 0.664/(Rek) = 0.664/(6' u1 x/P 

Equations (6 ) ,  ( 8 ) ,  (18) and (20) were  then combined to obtain the heat t ransfer  

to the wall. 

Another equation valid for  laminar  flow and compared to experimental  

data in the present  report  is a modification of the van Driest  (Reference 4 2 )  

equation, as discussed by Piesik,  Koppang and Simkin (Reference 12) .  

t e r m s  of heat t ransfer  to the wall ,  this can be wri t ten as  

In 

Turbulent Flow. One of the turbulent flow methods used i n  the analysis 

(designated the i terat ion method) involved a combination of the law of the wall  

for  incompressible flow 

and the velocity defect law for  incompressible flow 

to obtain the skin friction relation 

17 

c 
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where the friction velocity, u is defined as 
7' 

'''he skin friction relation in Equation (24) was modified for compressible  

flow by evaluating propert ies  a t  Ecke r t ' s  reference enthalpy [Equation (19)], 
1 
c 

such that 
.l. -I. 

c f  = Cf (P1/P"j z Cf 

and 

where the thermal  enthalpy ratio is given by 
J, 

TI'' 
= 

c: c Pi d T / x c i l  i 1"' c Pi dT 
298OK 298OK i 

Thus Equation (24) takes the form 

Based on the analysis of Clauser  (Reference 43) and others ,  the 

constants A and B a r e  5.6 and -2.5, respectively.  

obtained from Danberg's (Reference 44) data as 

The parameter ,  C ,  is 

C = 5.5 t 6.4 

18 
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where the thermal  enthalpy rat io  is 

= ciw JTwcpi d T /  [ ~ c i l  IT’ c dT t (P tT”  Uf ] (31) 
Pi 2 g J  

298OK 298OK TH i 

I 

The final relation for  skin friction coefficient now becomes 

0.5 

.l. 

The boundary layer  thickness 6 (for u se  in R C  ) i s  obtained f rom the 6 
momentum thickness ra t io  equation 

The momentum thickness 8 i s  found f rom a n  i terat ion process  

involving Equations ( 3 3 ) ,  ( 3 2 ) ,  (13), and the following equation for  the 

displacement thickness ra t io  

= 1’ [1 - k) TH r ] d ( y / 6 )  1 

0 

( 3 4 )  

The velocity variation a c r o s s  the turbulent boundary layer  is found 

f rom the following modification of the velocity defect equation which includes 

the deviation f r o m  the logarithmic line 

19 



LMSC/HRE C A 7 9 1 3 54 

where the G1 t e r m  i s  plotted by Clauser  (Reference 43) as a function of y/s. 

The enthalpy variation is given by the Crocco equation, modified to 

include the Prandt l  number i n  the expression for h aw 

The Reynolds analogy expression is given by Shapiro (Reference 45) as 

Ch = 0.5 Cf/ 1 - (1 - Pr*) uT(Cf/2) 0.51 
(37) 

In the laminar  sublayer,  the f r ic t ionveloci ty ,  u is equal to the r' 
f r ic t ion  length o r  f r ic t ion distance pa rame te r ,  y7, which for compressible  

flow with heat t r ans fe r r ed  to the wal l  may be wri t ten f rom Harkness (Refer- 

ence 46) as 

h - h  
(38) 

= (p r ) O e 5  = 11.5 t 6 . 6  ( Taw TiwTw) M 11.5 t 6 . 6  ( "Zaw w)TH 
w w  U T  = YT 

PW 

The heating ra te  for  turbulent flow by the "iteration" method is thus 

found by combining Equation (38) with Equations (37), (33), (32), (8) and (6) .  

Another recent  and promising approach to the prediction of the skin 

fr ic t ion coefficient in  compressible  turbulent flow is the calculation pro-  

cedure developed by Spalding and Chi (Reference 47). 

that a unique relationship exis ts  between F 

that for  a compressible  turbulent flow, functions of Mach number and tem- 

Fc '  F R e '  pe ra ture alone, viz , 

pressible  flow identically to the incompressible one. 

concluded that the function F 

They have postulated 

Cf and FRO Reo o r  FRxRex,  such 
C 

and FRx,may be found which relate the com- 

Spalding and Chi 

can  be found f rom,  
C 

20 
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where the modified Crocco relation [Equation (36)] defines the enthalpy 

profile, which in  turn provides the required density ratio.  

fit of available experimental  heat t ransfer  data ,  they obtain for  F 

Sased  on the bes t  

R e  I 

Rx = FRe/Fc. Ei ther  of the functions F or  F can be 
R x  R6 and the fact that F 

used in  the calculation procedure depending on whether the Reynolds number 

is based on momentum thickness 8 o r  running length x. Equation (40) was 

modified slightly due to the high adiabatic wal l  t empera tures  encountered in  

this analysis ,  and F was calculated in  t e r m s  of t he rma l  enthalpy rat ios .  
R e  

The unique relation between skin friction coefficient and Reynolds 

number based on momentum thickness for a n  incompressible turbulent 

boundary layer  is given by Spalding (Reference 48) as,  

1 
Reei = - 6 G  (u ) 4.8 (rl - (o,4ZuG)] exp(0.4 uG) t (0.42uG)t ' 

1 2 1  3 1  4 1  - g (0.4 uG) - - 12 (0.4 uG) - - 40 (0.4 uG) - 180 (0.4 uG) 

Thus,  assuming Spalding and Chi 's  hypothesis, Equation (41) can be used 
for  compressible  turbulent boundary layers  by letting 

cf .  1 t9i = FRe 
= Fc Cf and Re 

where Cf and R e  are  valid in  the compressible  problem. e 
In the present  heat t r ans fe r  analysis ,  a n  i terat ion scheme,  using 

Spalding and Chi's skin friction hypothesis, was se t  up to solve for momentum 

thickness,  8, involving Equations (13), (33), (34) and (41). The heat t ransfer  

r a t e s  were  then found by combining Equations ( 6 ) ,  (8), (37 ) ,  and the value of 

Cf f rom Equation (41). 

21 
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F o r  purposes of comparison, the turbulent heat t ransfer  analysis a l s o  

included the Blasius relation fo r  skin friction coefficient as given by Eckert  

(Reference 40),  using the reference enthalpy concept 

J. -0.2 
Cf = 0.0592 ( R Z )  

4.2 STRONG SHOCK REGION 
P 

In the strong shock region of plume impingement on a flat plate, some 

f o r m  of stagnation heat t ransfer  relation is suggested. 

the infinite radius associated with a flat plate o r  a large radius associated 

with a curved panel, methods of predicting velocity gradients by the Newtonian 

flow relation a r e  inaccurate (since heating ra tes  vary  a s  the inverse of the 

radius squared) ,  Also, since this region i s  usually s o  narrow on the plate, 

sufficient experimental  data in  this region a r e  usually lacking. 

However, because of 

Two relations were t r ied  for  this strong shock region, One was a 

modification of the F a y  and Riddell (Reference 49) stagnation point equation 

where the velocity gradient was taken to be the actual  gradient behind the 

strong shock along the plate, s tar t ing f r o m  the point at which the plume 

boundary f i r s t  hit the plate. The velocity u1 and density p in  this region 

were  those calculated by ideal gas relations behind the strong shock as 

discussed in  the section describing the strong shock p res su res .  

viscosity p Lewis number Le,  concentrations c and adiabatic wall  

enthalpy haw were  based upon p and T 1 1 

1 

The 

i '  1 1' 

in  this region. 
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The other equation used in this strong shock region was  that given by 

African0 (Reference 13) which was a modified vers ion  of the relationship 

given by Kemp and Riddell (Reference 50) 

55,000 (pl/R1 T - 
% v -  ~t 0.75 h/Re (45) 

The resu l t s  of these two expressions fo r  heat t r ans fe r  rate in the s t rong 

shock region and the previously descr ibed methods fo r  predicting heat t ransfer  

r a t e  in the weak shock region based on both a laminar  and turbulent boundary 

layer  a r e  compared to  experimental  data in the next section. 

sons a r e  not shown for  all the t e s t  programs indicated in Table 1, the examples 

chosen a r e  representat ive of the overall  resu l t s .  

Although compari-  

23 



LMSC/HREC A791354 

Section 5 

DISCUSSION OF RESULTS 

5.1 PRESSURE DISTRIBUTION 

- 
A representative example of the impingement flow field created by a 

rocket nozzle exhaust plume impinging on a flat plate paral le l  to  the plume 

axis of symmetry  is shown in Figure 8 for the UTC Centaur Retro Motor at 

a n  altitude of 109,000 feet. The analytical results f o r  p re s su re  distribution 

along the centerline of a flat plate boundary, with the same configuration as 

i l lustrated in F igure  8 ,  are compared to  experimental  data fo r  five typical 

ca ses  (see Figures  9 through 13). 
were  analyzed using the given propellant composition; the cases  shown in 

F igures  12 and 13 a r e  based on room temperature  a i r  and nitrogen, respec-  

tively, as the exhaust gas .  F o r  all these cases ,  the prediction of p re s su re  

in  the weak shock region is based on resul ts  of a n  axisymmetr ic  method-of- 

charac te r i s t ics  impingement flow field with a relieved boundary of the f o r m  

specified by the value of the parameters  a and tan6 shown on each f igure.  

The p res su res  shown in the strong shock region were  predicted with the ideal  

gas  strong shock wave hypothesis descr ibed previously. 

ment p re s su re  predicted by Newtonian impact theory a re  a l so  shown as a 

comparison over the ent i re  length of the flat  plate boundary. 

The f i r s t  three cases  are hot gas t e s t s  and 

Values of impinge - 

Results of the present  p re s su re  analysis ag ree  with the general  con- 

clusions drawn i n  References 1 and 2, based on experimental  data for  cold 

flow. F o r  high values of h/R and low values of p /pAMB (see Figures  9 ,  

10 and 14 for  hot flow, Figure 12 for  cold flow) the peak p res su re  occurs  at 

the point of impingement of the plume boundary on the plate, with another 

discontinuity occurring where the l ip  shock intersects  the plate. F o r  low 

values of h/R and high values of p /pAMB (see Figure 11 for  hot flow and 

te e 

te e 
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Figure  13 f o r  cold flow), the peak p res su re  occurs  in the weak shock region 

downstream of the impingement point. 

The case of the S-IVB Retro Motor impinging on the Centaur Panel  

( see  Figure 2)  is m o r e  complicated to  analyze. 

paral le l  to the S-IVB nozzle axis of symmetry ,  the panel curvature  adds a 
new dimension of relief associated with the three-dimensional "spreading" 

effect of the impingement flow. 

panel centerline shown i n  Figure 14 was predicted with a relieved boundary 

of the f o r m  given by Equation ( l ) ,  the parameters  a and tan6 do not have the 

same relationships shown in F igures  6 and 7 for a flat plate. An interesting 

feature  of this flow field is  that the impingement shock wave lies approxi- 

mately paral le l  to the panel centerline for a large portion of the distance 

downstream; this i s  a resul t  of the additional amount of flow relief provided 

by the panel curvature  and the fact that  I; is large.  Hence, the good ag ree -  
ment of experimental  p r e s s u r e  data with Newtonian impact theory. 

Although the panel is 
- 

- Although the p re s su re  distribution along the 

The analytical p r e s s u r e  distributions shown along with tes t  data for the 

S-IB Retro scale  model tes t  in  Figure 15 and the S-I1 Retro scale  model tes t  

in Figure 18 do not make use  of the flat plate theory and Equation (1) for the 

relieved boundary of the impingement flow field,  

exhaust plume impinged on a blast deflector r amp  and then a curved inters tage 

panel which was angled away f rom the nozzle axis of symmetry.  The configu- 

ration of the S-I1 Retro was s imi la r  to the S-IB Retro,  with the addition of one 

m o r e  expansion corner .  

handle the more  complex flow fields such as the S-IB Retro,  a fictitious upper 

boundary for a n  axisymmetr ic  method-of-characteristics impingement flow 

field was used to predict  the p re s su re  distribution. Since two shock waves 

are  created in  this flow field (see Figure 16), i t  was necessary  to generate 

the impingement flow field i n  two separate  runs which had different a l te red  

boundaries; the f i r s t  flow field used a s t ra ight  line boundary canted a t  a n  angle 

of five degrees  away f r o m  the physical boundary a t  the supersonic turning point, 

while the second flow field used a s t ra ight  line boundary canted ten degrees  

In the case  of the S-IU, the 

Although no general  theory has been postulated to 
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away f r o m  the physical boundary a t  the compression corner  responsible for 

the second shock wave. The S-I1 Retro impingement flow field was created 

in  a n  analogous manner .  Evidence that the S-IB Retro flow field, including 

placement of shock waves,  is c lose to the actual  flow field is provided by a 
comparison of total  p re s su re  calculated f r o m  the method-of-characterist ics 

to the experimental  values measured by a total p re s su re  rake i n  the flow field 

as shown in  Figure 17.  
* 

A particularly interesting phenomenon can be observed f rom the experi-  

mental  data for both of these cases .  

15 and 18 for  p re s su re ,  Figure 22 for S-IB heat t ransfer )  is  ve ry  much in 

evidence a t  a downstream location of x 

theoretical  impingement flow fields.  

impingement was constructed with evenly spaced s t r ingers  which remain a 

constant height above the inters tage surface of skin, i.e., identical to flight 

configurations. 

curved in te rs  tage panel c rea tes  secondary impingement shock waves f rom the 

two s t r inge r s  adjacent to the centerline s t r inger ,  

heat t ransfer  and p res su re  data i s  due to these secondary impingement shocks 

f rom the adjacent s t r ingers  crossing the top of the centerline s t r inger  where 

the measurements  were  being taken. 

A secondary peak in the data (see Figures  

5.0 inches and is not predicted by the 

The curved inters tage panel under 

The three-dimensional spreading effect of the flow over  the 

The rise in  experimental  

5.2 HEAT TRANSFER RATE 

Analytical heat t ransfer  ra tes  and experimental  data a r e  compared for  

th ree  c a s e s  typical of the flat plate resul ts  i n  Figures  19, 20 and 21. 

resu l t s  indicate that turbulent boundary layer  heat t ransfer  theory cor re la tes  

the experimental  data much bet ter  than laminar  boundary layer  theory. F o r  

the cases  analyzed, the general  trend is for  the NAA laminar  [Equation (21)] 

curve to be the lowest, followed by the Rlasius laminar  and the i teration 

laminar  methods which predict  slightly higher values.  

method based on the Spalding and Chi turbulent skin friction hypothesis 

matches the experimental  data m o r e  closely than any turbulent method, a 

fact  that  Wallace (Reference 51)  a l so  observed i n  his analysis of hypersonic 

The 

It appears  that the 
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turbulent boundary layers  in  rocket nozzles and on a flat plate. In seve ra l  

ca ses ,  however, the turbulent Blasius method a l so  predicts values of heat 

t ransfer  which are close to the data. The Blasius method incorporated the 

accura te  determination of reference quantities associated with the i terat ion 

procedure. 

The method used to predict  heat t ransfer  r a t e s  in  the strong shock 

region for the flat plate cases  is based on a modified Fay  and Riddell stagna- 

tion point heating equation. 

shock region methods. 

ra tes  due t o  African0 (Reference 13) is. a l so  shown on the graphs f o r  com- 

parison. 

would help in  deriving and confirming a more  detailed theory. 

of data points to the left of the axial position a t  which the undisturbed plume 

free boundary in te rsec ts  the plate would indicate that flow reve r sa l  did indeed 

take place. 

problem, accura te  predictions of heat t ransfer  in  the strong shock region 

would not be expected. 

?! 

It does not appear to be a s  reliable a s  the weak 

A method for predicting strong shock region heating 

A great  number of experimental  data points in  this narrow region 

The presence 

Since these two models have neglected the viscous flow reve r sa l  

The predicted heat t ransfer  ra tes  for the S-IB r e t r o  a r e  shown against  

the experimental  data in  Figure 22. 

inches a r e  the AS-201 and AS-202 flight data points which were multiplied by 

the turbulent scale  factor (1 

1/10 of the full-scale vehicle. 

theoretical  heat t ransfer  ra tes .  

parison between theory and experimental  data beyond x 

the fact that the secondary impingement shock waves f rom the adjacent 

s t r ingers  c r o s s  the centerline s t r inger .  

Also included on the figure a t  xe = 3.2 

) O a 2  = 1.585 since the model lengths were  /1 FS M 
The flight data points ag ree  well  with the 

As has been pointed out e a r l i e r ,  the com- 

z 4.0 is clouded by e 

The comparison between theoretical  and experimental  heat t r ans fe r  heat 

r a t e s  due to the exhaust of the S-IVB Retro is shown in Figure 23. 

though the p re s su re  distribution was accurately predicted,  i t  appears  that the 

theoretical  boundary layer  methods have predicted values of heat t ransfer  ra te  
which a r e  low in comparison to the data. 

Even 

This i l lustrates  an  important point 
0 
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concerning application to impingement problems on curved panels, Through- 

out the present  analysis , the boundary layer-heat  t ransfer  phenomenon along 

the centerline of the impinged surface has been t reated as locally two- 

dimensional. 

flow on a flat plate surface,  i t  does not account for  the additional relief 

mechanism affecting the boundary layer  on a curved panel, 

p re s su re  gradients along the centerline a r e  m o r e  pronounced for  this case .  

Hence, the corresponding c r o s s  flow will reduce the boundary layer  thickness 

compared to a two-dimensional calculation. 

surface will be grea te r  for  a Ifthinner' '  boundary layer .  

of heat t ransfer  ra te  on curved panels due to rocket exhaust plume impinge- 

ment may require  a three-dimensional boundary layer  analysis to correct ly  

simulate the physical problem. 

Although this a s  sumption closely approximates impingement 

The spanwise * 

The heat t ransfer red  to the 

Future  predictions 
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Section 6 
CONCLUSIONS 

Methods have been developed for predicting p res su res  and heat t ransfer  

ra tes  resulting f r o m  rocket nozzle exhaust plumes impinging on flat plates 

and curved panels. 

symmetry,  a technique of predicting centerline p re s su re  f rom a n  axisym- 

met r ic  method-of-characterist ics impingement flow field with a relieved 

upper boundary specified by a cubic equation was found to give good ag ree -  

ment with both cold and hot gas  experimental  data. 

p re s su re  distributions were  found f r o m  a linear interpolation formula based on 

the shock angle and turning angle for strong, maximum strength weak, and 

normal  shock waves. 

theoretical  impingement point of the plume,boundary on the plate for high values 

of h/R 

conditions were  reversed.  Three-dimensional flow relief effects on the center-  

line of curved panels canted away f r o m  the nozzle axis of symmetry were  a l so  

simulated using the technique of a l ter ing the axisymmetr ic  flow field boundary 

which provides a close agreement  with experimental  p res  su re  data. 

F o r  the case  of a flat plate paral le l  to the nozzle axis of 

In the strong shock region 

Impingement p re s su re  peaks were  found to occur a t  the 

and low values of p /pAMB and to occur fur ther  downstream when the 
te e 

Heat t ransfer  calculations in  the weak shock region, based on the 

Spalding and Chi turbulent skin friction relation, agreed  quite closely with 

experimental  data. The good agreement  between heating ra tes  based on the 

Spalding and Chi turbulent skin friction law and experiment would imply that 

the original Spalding and Chi hypothesis, derived on the basis of a ze ro  p re s -  

su re  gradient flow, continues to be valid in  the presence of a p re s su re  gradient. 

Future  plans cal l  for investigation of raref ied flow effects (at  higher a l t i -  

tudes) and for  prediction of p re s su res  and heating ra tes  off the centerline of flat 

plates and curved panels. In summary,  i t  is felt that the cur ren t  methods of pre-  

dicting pressure  and heating caused by rocket exhaust impingement provide a n  

improvement over previous methods of analysis for all of the tes t  data analyzed. 
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Figure  3 - S-IB/S-IVB Interstage Used in S-IB Re t ro  T e s t s  at CAL 
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Figure  4 - Flat Pla te  Used in  RDS-507 Propellant Tes t s  at CAL 
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FIGURE 7. RELATIONSHIP BETWEEN PARA ETER a AND 
PARAMETER TAN 8 
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Appendix A 

THE CONCEPT OF FAR DOWNSTREAM 

F 

One of the c r i te r ia  used in this analysis to  establish the flow relief 

associated with a nozzle exhaust plume impinging on a paral le l  flat plate is 

based on an  intercepted volume segment of the plume and necessar i ly  contains 

one a r b i t r a r y  constant. 

point along the plume axis of symmetry at which the volume calculation should 

be terminated and, hence, uniquely define the volume segment for  a given case. 

The location of this  downstream point i s  determined by considering the relation- 

ship between "far downstream" and the concept of maximum or  "limiting flow 

relief. ' I  

The constant t o  be determined is the downstream 

The t e r m  designated as flow relief is not well  defined, but i n  this context 

i t  i s  meant to imply the slope of the ar t i f ic ia l  boundary used in  a n  axisymmetr ic  

method-of-characte ris t ics flow field to simulate the true three dimensional 

spreading of the flow over a flat plate a t  a par t icular  axial  location. F r o m  

the f o r m  of the experimental  p re s su re  distribution along the centerline of the 

flat  plate, i t  was observed that the slope of the ar t i f ic ia l  boundary producing 

the distribution approached a constant value, i.e ., a limiting value representing 

the maximum amount of relief needed to simulate the physical problem, F r o m  
the equation of the relieved boundary 

- 3  ( 8 - E ) 3  f a  ( R - K )  (T-zo) - b (x-x ) = 0 
0 

i t  is c lear  that the slope or  first derivative asymptotically approaches the value 

b1'3 for increasing x. If the parameter ,  t a d ,  is defined 

tan0 = b 1/ 3 

then the angle 8 is a measure of the maximum o r  limiting flow relief f a r  

downstream. 

A -  1 

ri c 
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The volume ratio,  V1/Vz, where 

V I  = volume segment of exhaust plume contained 
within the undisturbed plume f ree  boundary 
and the flat plate boundary between E, ~ and 

1 

V2 = volume of the axisymmetr ic  unrelieved flow 

po = 
x = nondimensional supersonic turning point 

field between ZT and (ZT t po) 

unknown point far downstream 
- 

T 

is correct ly  a need for relief r a the r  than a measure  of relief. 

to realize that V1/Vz for  a given point po descr ibes  a n  overall  o r  t lgrosslt  

es t imate  of "need" and does not reflect  a local distribution for  all values of 

x between and x 
measure  of relief associated with the ar t i f ic ia l  boundary equation, tane. 

It is important 

- 
and (xT t po). Hence i t  should be related to the "grossll T 

F o r  the range of parameters  considered in  this analysis 

0 < a < 2.5 

0 < tanO< .45 

- -  

- - 
(A-3)  

the universal  far downstream point was taken to be (x 
c r i t e r i a  that the value of the f i r s t  derivative of Equation (A-1) should be 

asymptotically close to tane. 

example cases  shown in F igures  A1 through A4. It is not meant to  imply 

that the general  impingement theory and the relationship between need for 

relief,  V1/V2, and the measure  of relief,  tan6, would not be valid for a 

different downstream point, e.g., (xT t 3 5 ) .  

would be slightly different, but the prediction method would function equally 

as well. 

3. 30), based on the T 

This is  closely satisfied in  the four different 

The empirically derived curves 

A - 2  
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FIGURE A-I. NAA S ID 63-426 -RELATIONSHIP BETWEEN 
VOLUME RATIO AND DERIVATIVE OF RELIEVED 
BOUNDARY AS A FUNCTION OF E 
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FIGURE A-2. RDS-507-RELATIONSHIP BETWEEN VOLUME 
RATIO AND DERIVAT RELIEVED 
BOUNDARY AS A FU OF X 
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Nondimensional Distance from Nozzle Exit Plane, TT 

FIGURE A-3. THIOKOL CENTAUR RETRO-RELATIONSHIP 
BETWEEN VOLUME RATIO AND DERIVATIVE OF 
RELIEVED BOUNDARY AS A FUNCTION OF 

A - 5  



LMSC/HREC A 7 9  1354 

IO" 

lo- * 

IO- I I I I I I 
IO 20 30 40 50 
Nondimensional Distance from Nozzle Exit Plane, K 

FIGURE A-4. RPI CENTAUR RETRO-RELATIONSHIP BETWEEN 
VOLUME RATIO AND DERIVATIVE OF RELIEVED 
BOUNDARY AS A FUNCTION OF R 
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